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Abstract 

Proofs have been given that the extremal technique to define the photon  form factors of 
the nonlocat quantum electrodynamics needs some extensions. There is evidence that the 
use of  form factors that are not entire analytical functions does not have to be rejected 
from the very beginning. In this respect several mutually connected form factors have been 
calculated and discussed. The short-distance behavior of  the electrostatic potential is then 
established. 

1. Introduction 

Attempts have been made to define the bounded value of the electrostatic 
potential at small distances both in classical (Born, 1934) and quantum physics 
(Wataghin, 1934). Among the methods proposed in this respect a special 
interest is raised by the nonlocal approach to the quantum electrodynamics 
(Yukawa, 1950; Blokhintsev, 1957; Efimov, 1972; Marnelius, 1974). The present 
day high-energy collision processes show that neither the existence of the particle 
structure nor the nonzero particle radius can be ignored. In this letter sense the 
existence of the high-energy impact factors is significant (Cheng and Wu, 1973). 
The above-mentioned difficulties can be-a t  least in principle-satisfactorily 
overcome within the nonlocal approach to the electromagnetic interaction. 
The formulation of the nonlocal theory needs by itself certain extensions of 
the standard (local) formalism. To formulate the nonlocal theory we have to 
require that the local theory be the limiting case of the nonlocal one. In this 
line the main object of the present paper is to analyze the physical meaning of 
some mutually correlated photon form factors. For this purpose we shall 
adequately reformulate certain aspects of the nonlocal description of the 
Coulombian interaction proposed by Efimov (1972, 1974). Such a reinterpre- 
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tation is of real interest since it is able to show the meaning and role of the 
photon form factors in the description of the particle structure. 

In Section 2 there are presented some preliminaries and notation. The 
extremal approach to the definition of the photon form factor is analyzed in 
Section 3, thus also proving that there are needed certain extensions and refin- 
ments of the initial formalism. Proofs are given that the extremal approach 
does not necessarily possess a single solution. An alternative approach to the 
initial extremal problem is proposed in Section 4. The formulation proposed 
possesses the property of taking as finite the main functionals of the theory. 
The adequacy of an additional form factor is discussed in Section 6. The main 
integrals used are presented in the Appendix. 

2. Preliminaries and Notation 

The nonlocal approach to the Coulombian interaction leads to the potential 
(Efimov, I972) 

w(r) 2.2 j / ] (2.1) 

where I is the fundamental length and where 

U ~ = r d kJl(kr)V(k21 z) (2.2) 
0 

The photon form factor has been assumed to be an entire analytical function 
of the order I ~< p < ~, which takes positive values for the real u values and 
which fulfills the conditions 

V*(u) = V(u*), V(0) = 1 (2.3) 

and 

V(u) = O(1/uS), u -+ ~,  (c~ > 0) (2.4) 

In these conditions the possibility exists of defining the finite value of the 
Coulombian potential and of the electron self-energy too. 

The square of  the electron charge radius is given by 

{r 2) = --412 V'(0)  (2.5) 

so that in order to assure the finite nonzero value of the electron charge radius 
the condition 

- ~ < V ' ( 0 )  < 0 ( 2 . 6 )  

has been imposed. However, the limiting case of the zero charge radius has to 
be included in the present theory, too. Consequently, we shall extend the 
condition (2.6) as 

- ~ < V ' ( 0 )  ~< 0 ( 2 . 7 )  
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The short-distance behavior of the coulombian potential and of the function 
(1/r2)U(r2/12) is given by the functions 

W(°) [V] -= r--,olim W(r)= ~ e  ~f-du@V(u) (2.8) 

o 

and 
c o  

D(°I[V] -=-lim U = du V(u) (2.9) 45 
o 

respectively. The modified photon propagator D(r 2) takes the maxhnum value 
at the origin: 

1 F *  

max D(r 2) = D(O) - ~ du V(u) (2.10) 
167r~l 2 

o 

In these conditions we shall additionally require the physical torm factor to 
take as finite both the functions If (°) [V] and D(°) IV], too. 

The existence of the particle structure need not be exlusively expressed by 
the non zero value of the charge-radius or by the existence of a charge distri- 
bution. Indeed, the electron radius e2/2rno c2 is not only a charge radius it 
also expresses the lower limit of the measurable quantum mechanical high- 
energy space shift (Papp, 1976). Moreover, the electronic and protonic impact 
factors (which establish-up to a certain factor-the value of the high-energy 
scattering amplitude) are given by e2/2mo c2 and e2/2Mo c2, respectively (Cheng 
and Wu, 1969). In this context we shall consider that the requirement that the 
functions W(°) [ V] and D(°) [V] take finite values implicitly contains elements 
of the high-energy space-time description, too. 

3. The External Approach 

In the absence of another general method an extremal approach has been 
formulated to choose explicitly the form of the photon form factor (Efimov, 
1972, 1974). For this purpose it has been initially required that the form-factor 
take the extremuum of the function W(°) [V] ; thus we obtain the evaluation 

Consequently 

and 

sin x/u 2 
V1 (u) = x/u (3.1) 

W (°) [V 1 ] = e/4nl (3.2) 

(r  2 )(1) = 412 (3.3) 
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so that a well-defined physical meaning can be attributed to the fundamental 
space constant l. However, the above expression of the form-factor is not a 
satisfactory one since [see equation (A1) in the Appendix] 

O (°)  IV  1 ] = ~ (3 .4 )  

so that the photon propagator ceases-contrary to the initial a im-to  be bounded 
at the origin. 

It can easily be seen that the extremal problem does not necessar~y 
possess a single solution. Indeed, performing the Fourier transform V(v) of 
the above form factor and requiring both the functions V(u) and V(v) to take 
real values for the real values of their arguments, we have 

V(u) = 2 ~ dv cos uvV(v) (3.5) 
0 

Consequently [see equation (A2)] 

~ d'@' V(u) = x / ~  f du V(u) (3.6) 

0 0 

This result shows that the function W (°) [V] takes the extremal value with 
respect to both the functions V 1 (u) and V1 (u), respectively. Inverting the 
relation (3.5) one obtains 

2 ~ dv 1 sin2 v cos uv 2 (3.7) 
V I ( / ' / )  = 71" , j  v 

o 

However, the second solution has to be rejected as 1~ 1 (0) = oo. The above results 
let us conclude that the initial formulation of the extremal problem requires 
some additional refinements. 

4. The Another Extremal Approach 

In agreement with the tasks we have proposed, a good physical form factor 
has to take finite the essential quantities of the theory and especially the 
functions 14I(°) [V] and D (°) [V]. For this purpose it is quite natural to require 
the photon propagator (at the origin)to be an extremuum. Expressing the 
function D(°) [V] as 

D (°) [VI = 2~- V(X/~ = ~ I ~ V(2~fU--} (4.1) 
O O 

and setting 

V2(2W/~= VI(U ) (4.2) 



D E F I N I T I O N  O F  N O N L O C A L  P H O T O N  F O R M  F A C T O R S  739 

it can be remarked that the present extremal problem is reduced to the previous 
one. Consequently the new form factor is 

V 2 ( u  ) _ 4 . 2R__ ( 4 . 3 )  
- u 2sin 2 

so that the extremal value of the function D (°) [V] is given by [see equation 
(A3)] 

D (°) [V2 ] = rc/4l 2 (4.4) 

Performing the calculations one obtains [equation (A4)] 

- - ( o ' - - - -  X / ~  e e W I[V2] = ~-7~ ~ 0.95 
3 47rt 

(4.5) 

so that the upper bound of the Coulombian potential is practically identical 
to the previous expression (3.2). The form-factor so obtained is an entire 
analytical function of the order 0 = 1, which takes positive values for the real 
u values and which satisfies the conditions (2.3) and (2.4). 

Using the Fourier transform of the form factor V2(u), we have [equation 
(A5)] 

U 2 ~ =4  ~ -  1 -  sin2 8 ~ u  (4.6) 

1 

so that [equations (A6) and (A7)] 

~rr ~-~ 1 -  S +C u (4.7) 
1 

where the behavior of the Fresnel (sine and cosine integral) functions at the 
origin and infinity is well established. 

In the present case we have 

v; (o )  = 0 (4.8) 

so that the physical meaning of the fundamental space constant l has now to be 
established only in terms of the finite evaluations (4.4) and (4.5). We can thus 
consider-in agreement with the previous remarks-that  the nonzero charge 
radius is not the only possibility to express the particle structure. 

It can be easily verified that 

; d u V 2 ( u ) = ~ d u ~ 2  (2)  (4.9) 
o o 

where [equation (A8)I 

• (u) = 0(1 - u), u E (0, ~o) (4.10) 
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is the Fourier transform of the function [V2(u)] 1/2. Consequently, the other 
solution of the extremal problem is the distribution 

Va(u)=02(1 -[ul), u E ( _  o% +~o) (4.11) 

The function U(r2/l 2) takes correspondingly the form [equation (A9)] 

which allows the form factor V3(u ) to be effectively replaced by the distri- 
bution 

lO 
' i u [ ~ < l  

v(3e)(u) = (4.13) 

, l u [ > l  

The potential corresponding to this distribution is 

W3(r ) = w(a)(r) + W~l)(r) (4.14) 

where 

w(a)(r) = e/4rrr (4.15) 

is the Coulombian potential and [equation (A10)] 

e r G 2 o ( r 2  0 ) (4.16) 
w~l)(r)= 16nx/nl 2 ~-2-1/2,-1,-1 

is the regularizing potential implied by the Bessel function Jo(r/l). The Meyer 
function can be expressed as 

~o ( 1)121+211-1/2 X/@ 20 o - (4.17) G13(x1_1/2,_,,_1)=_ x/~l!(2]+ 1 ) ~ 7 ~ . ~ !  t - - x  
l =  

so that 

20 o _X/~ 4 (4.18) lim G13(x[-l/2'-l'-l)- x 
X -.~ O 

Consequently 

e e (4.19) 
tim W(1)(r) = 2~-21 4rrr 
r -"* 0 

In these conditions both the functionals W (°) IV] and D (°) IV] take the finite 
values 

W (°) [V3] = e/2rr2l (4.20) 

and 
D (°) [V3] = I/4l 2 (4.21) 
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The dominant contribution to the potential W3(r ) for large distances is given 
by w(a)(r) because the Bessel function Jo(r/l) vanishes asymptotically. 

Both the distributions V3(u ) and v~el(u) are not entire analytical functions, 
but they give raise to physically meaningful results. On the other hand these 
functions do not imply additional singularities in the propagator, so that they 
can be admitted in this respect, too. Moreover, the above functions also express 
in fact the usual method of performing the momentum cutoff. In these con- 
ditions these functions preserve a justified role as candidate form factors, 
since they also fulfill all the (other) previously formulated requirements. 

5. The Correlated Form Factor 

Similarly to the photon form factor V2(u), the form factor V3(u ) also 
gives rise to a zero charge radius. It can be easily seen that the absence of the 
linear term in the u variable implies the vanishing of the form-factor derivatives 
in the origin. Indeed, 

V2(u) u~o 1 -u2/12, V3(u ) = 1 (5.1) 
u - ~  0 

whereas 

Vl(U) ~-- l -u~3 (5.2) 
U'-+O 

It can be also noticed that the form factor V 1 (u) takes appreciable values only 
in the vicinity of the origin: 

< 7r/2 (5.3) 

Gathering the above remarks we can propose qualitatively as a suitable form 
factor the function 

[1 -(1/M2)]ul, [ui<~ 1 
V(u)= 

0, l ul > 1 (5.4) 

where Mis a real parameter. But this result agrees with the one that can be 
obtained if we would define a correlated solution to the extremal approach 
formulated in Section 4. Indeed, the solution V2(u ) implies-with respect to 
the relation (3.6) -the Fourier transform 

1 - l u l ,  iu i~<t  

V4(u) -   2(u) = (5.5) 

0, I u l > l  

as a (connected) solution of the extremal problem, too. In this latter case we 
have [equation (A11)] 

(/) U 4 ~ = l - J o  - J 2  (5.6) 
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The corresponding potential takes the form 

(I) W(40(r) (5.7) W4(r ) : w(a)(r) + W 3 (r) + 

where [equation (A12)] 

_ e,2 [z r ) 

so that a certain (not too large) modification of the previous potential Wa(r ) 
is implied especially at short distances. Consequently 

1 (5.9) e l w(O) [v1 ]  D(O)[v4] = 8l - 5 -  W (°) [V41 = 3rr2--- 7- ~ 2.35 

whereas 

( r 2 )(4) = 4i 2 (5.10) 

thus also obtaining the present charge radius as the double of the fundamental 
length. It can be also mentioned tha t - in  a larger sense-the existence of the 
elementary length 2I is "binarity" equivalent to the existence of the length l 
(Papp, 1973). The above results show the usefulness of the form factor V4(u ) 
to describe, in a certain mutual connection, both the quantum mechanical and 
the properly (electromagnetic) charge-structure aspects of the electron struc- 
ture. In this respect the existence of the form factor V4(u), which makes 
finite the main functions of the theory, is of  special physical interest. The 
potential energy becomes-with respect to the form factor V2(u)-identical 
to the electron rest mass when 

e 2 

l = 4~rmoC------- { (5.11) 

In the present case the electron rest mass is approximately 2.35 times larger 
than the potential energy. This fact would mean that in the latter case there 
is an essential contribution of the "nonelectromagnetic" structure effects. 

6. Conclusions 

In this paper we have restricted ourselves to the analysis of the short- 
distance behavior of  the Coulombian potential in the nonlocal quantum 
electrodynamics. Proofs have been given that the possibility of using form- 
factors other than the entire analytical functions is of real physical interest. 
The so obtained form factors are able to express certain aspects of the elec- 
tron structure. The analyzed form factors are in fact mathematically connected 
functions. It can be assumed that a rather complete description of the set of 
the physical form-factors so obtained needs a subsequent generalization: The 
photon form factors have to result from the general principles of the short- 
length measurements, too. However, as has been proved, significant results 
can be obtained by an adequate extension of this technique. From the physi- 
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cal point of  view the analyzed form factors differ in the extent they engage 
the fundamental space constant l. The existence of  a set of  (mutually connected) 
electron lengths, which do not relatively take too different values, is in agree- 
ment with the binary description of  the length measurements (Papp, 1973). In 
this way a mutual connection can be qualitatively established be tweenthe  
high-energy binary space-time description and the nonlocal theory, too. In this 
respect the fundamental space constant l has to be interpreted as the elemen- 
tary space imprecision. 

Appendix 

The main integrals used are 

~ d X s i n 2 x = o , ,  (11)  

0 

cos ax , a > 0 (12)  

0 

f d x . 2  7r 
~ - s l n  a x =  ~ a  (13)  

o 

iX2@X sin2 x - ~ / ~  2 3 (14)  

0 

xcosbxJI(( IN I1~) J1/2 ~ sin2 8--b' b > 0  (15)  

o 

i ~ sin ax 7r (sin a + cos a) (A6) 
J V x -  1 
1 

dx sin ax 2 7r S(x/a), dx cos ax 2 ~aa C(x/a) (A7) 
0 0 

sin ax cos bx = 7 0 (a - b) (A8) 

0 
a 

f dx J1 (x) = 1 - Jo(a) (19)  
0 [a, l o )  

f x ~ J l ( a N l ~  ) N/~ ~3<220 ~4= / -1/2 ' -1  (AI0)  = T  u u13 ,-1 

1 
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1 

f dx x2j t (ax)  = a-l  J2(a) 
o 

dx 27r 
J3/2(a) 

1 

(A11) 

(A12) 
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